
An Overview of Using Analytic Element Flow Solutions for Contaminant Transport Simulation

James R. Craig Alan J. Rabideau Karl Bandilla

Background: AEM & Transport Waterloo

- AEM is conventionally used for water resources rather than water quality investigations
 - Capture zone delineation
 - SW/GW interaction
 - Water budgets
- Groundwater flow models are increasingly used for the sole purpose of developing a contaminant transport model
 - AEM can, and should, be part of this

Background: AEM & Transport

- Strack (1992); Strack & Fairbrother (1997)
 - Moving front dispersion models
- Rumbaugh (1993)
 - Finite element (2D) (WinFlow-WinTran)
- o Grasshoff et al. (1994)
 - Finite difference methods (3D) (MLAEM-STYX)
- o Soule (1997)
 - Streamline-based air venting
- Everybody
 - Particle tracking, a bit of random walk
- Recent research has addressed how best to simulate reactive contaminant transport using general 2D AEM flow solutions – standard ADRE (Craig PhD 2005)

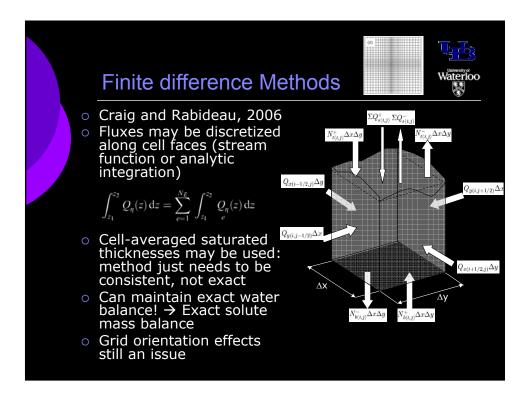
Overview

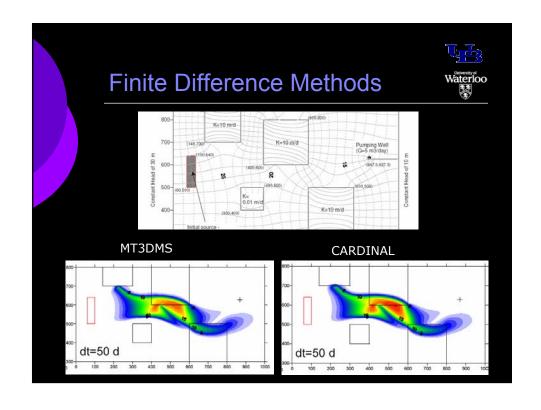
- Current scope of research
- AEM-based discrete modeling*
 - Finite element
 - Finite difference
- AEM-based semi-discrete modeling
 - Random walk
 - Streamline methods
- AEM-based continuous modeling
 - Coordinate-mapped transport solutions
 - AEM for transport??
- Future Research

Current Focus

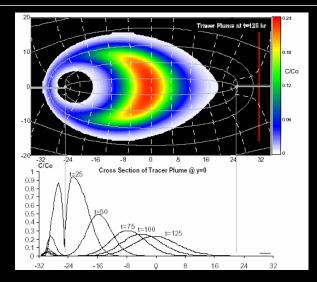
- 2D (vertically-averaged) reactive transport in single layer systems
 - Conceptually consistent with 2D D-F assumption
 - Concentration averaged over saturated thickness, h, of aquifer

$$h\theta \frac{\partial C}{\partial t} = -Q_{x} \frac{\partial C}{\partial x} - Q_{y} \frac{\partial C}{\partial y} + \frac{\partial}{\partial x} \left(h\theta D_{xx} \frac{\partial C}{\partial x} \right)$$

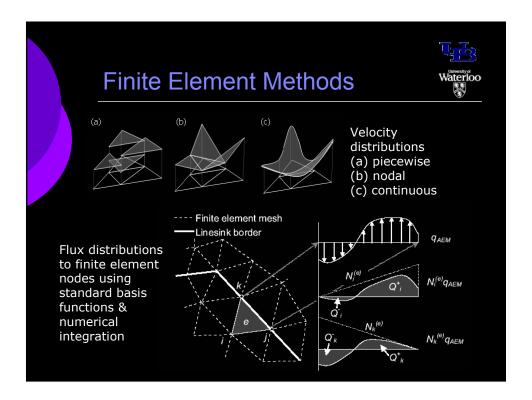

$$+ \frac{\partial}{\partial x} \left(h\theta D_{xy} \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial y} \left(h\theta D_{yx} \frac{\partial C}{\partial x} \right)$$

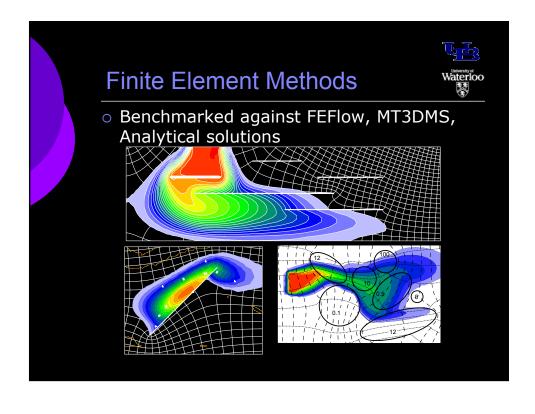

$$+ \frac{\partial}{\partial y} \left(h\theta D_{yy} \frac{\partial C}{\partial y} \right) + N_{t}^{+} \left(c_{t}^{+} - C \right) + N_{b}^{+} \left(c_{b}^{+} - C \right)$$

Discrete modeling


- Translate analytic element flow solutions to a discrete analog for use as input to FD/FE transport simulators
 - Finite element (FE)
 - Finite difference (FD)
 - Eulerian-Lagrangian methods
 - o Characteristic Methods (e.g., MMOC, ELLAM)
 - Flux-limiting methods (TVD)
- Requires significant bookkeeping/geometric processing
 - Primary difficulty is the maintenance of the exact water balance during translation

Finite Difference Methods




Finite Element methods

- o Craig & Rabideau (in review)
- Minimizes space-integrated error between approximate solution (composed of superimposed basis functions) and exact PDE
- Translation requires clever evaluation of finite element residual expressions:
 - Methods for distributing linesink, area sink fluxes
 - Methods for integrating singular residuals ($v \sim 1/r$)
 - Discretization rules:
 - Finite element sides coincide with analytic element sides
 Special unstructured mesh generator developed
 Means of handling AEM-based discontinuities in saturated thickness (e.g., Leaky wall)
- Important result:
 - **Cannot** export nodal heads from AEM flow solution to standard FE simulator and still have accurate transport
 - Can export element-averaged velocities, if singular flow is minimal
 - Best option: FE simulator has full knowledge of AEM solution

Semi-Continuous Methods

- Random walk
 - · Easy to implement, no translation required
 - Number of required particles is prohibitive; tracking is expensive for difficult models
- Deterministic streamline methods
 - 1D transport equation solved along streamlines (neglects transverse dispersion)
 - Streamline geometry benefits from exact flow field
 - Translation is simple, mass balance inexact
- Both methods would benefit from faster tracking routines (Taylor Series/Superblocks for tracking?)

Fully Continuous Methods

- Is it possible to have fully analytical flow and transport?
- Unlikely, but we can come pretty close

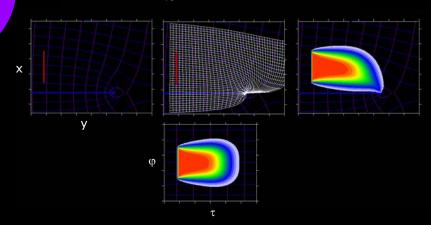
Coordinate Mapping

- Particular Solutions (2D):
 - If we can get $z=f(\Omega)$, we can obtain approximate steady-state (SS) transport solutions for some special cases
- $\circ~$ In the Ω domain, the SS-ADE can be approximated with constant coefficients :

$$-\frac{\partial C}{\partial \Phi} + \overline{D}_{l} \frac{\partial^{2} C}{\partial \Phi^{2}} + \overline{D}_{l} \frac{\partial^{2} C}{\partial \Psi^{2}} = 0$$

- \circ z=f(Ω)
 - SS Injection Well & Decay?
 - SS Pumping Doublet w/ decay?

Coordinate Mapping



- o $z=f(\Omega)$ is unattainable for complex systems
 - recharge, branch cuts, multiple roots...
- Mappings are still possible in terms of numerically-calculated time-of-flight (τ)
 - TOF, τ , obtained from AEM-generated pathlines
 - Revised constant-coefficient ADE in τ-φ coordinate system
 - Amenable to analytical or semi-analytical solutions in transformed domains
 - o Exact when transverse dispersion is negligible

Coordinate mapping

$$O \quad \frac{\partial C}{\partial T} = -\left(1 - \alpha_l \frac{N}{\overline{Q}_s}\right) \frac{\partial C}{\partial \tau} + \frac{\alpha_l}{\overline{v}_s} \frac{\partial^2 C}{\partial \tau^2} + \alpha_t \overline{v}_s \frac{\partial^2 C}{\partial \psi^2} - NC$$

Conclusions

- Multiple methods for AEM-based transport simulation have been developed
 - Translation is not trivial
 - Grid-free nature of AEM is beneficial
- Future Research
 - Multilayer systems
 - 3D transport in 2D D-F systems**
 - 3D transport in 3D AEM models
 - Further development of streamline models
 - Further development of coordinate-mapped analytic solutions
 - Specific methods:
 - o Transport through drain elements
 - Better handling of distributed singular flow (FE)