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Abstract

The pattern of a groundwater flow is characterized by aquifer features and the
number, type, and distribution of stagnation points (locations where the flow rate
is zero) in the flow domain. We identify a condition denoting flow pattern changes
in two-dimensional groundwater flow obeying Darcy’s law by examining changes in
stagnation points, using the Taylor series expansion of the discharge vector to repre-
sent the flow about such points. We find that the three standard types of stagnation
points (minimums, maximums, and saddle points) are completely characterized by
the first-order term containing the discharge gradient tensor. However, when the de-
terminant of the tensor becomes zero, stagnation points of other types characterized
by higher-order terms may come into existence: they may emerge suddenly, split to
a set of new stagnation points, or disappear from the flow, resulting in transitions
of flow patterns. Thus, the condition of zero-determinant of the discharge gradient
tensor is a condition denoting flow pattern changes. We illustrate the usefulness and
significance of this condition in understanding groundwater flows through several
examples of steady and transient flows.

1 Introduction

Flow pattern transition is important in classifying and understanding ground-
water flow, as evident by previous research by Tdth [17,18], Winter [19-21],
Anderson and Munter [1], Cheng and Anderson [5], Nield et al. [12], Townley
and Trefry [16], Smith and Townley [13], and Anderson [2] on surface water
- groundwater interaction, and by Bear and Jacobs [4], Javandel and Tsang
[10], Bakker and Strack [3], Steward [14], Erdmann [7], and Christ and Goltz
[6] on capture zone delineation and well-head protection.
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a. Minimum b. Maximum c. Saddle point

Fig. 1. Stagnation points, streamlines, and groundwater head surfaces.

We identify a condition denoting the transition in two-dimensional ground-
water flow by examining stagnation points using the Taylor series expansion
of the discharge vector. The analysis shows that when the determinant of the
gradient of discharge vector becomes zero at a stagnation point, the stagnation
point is subject to qualitative changes, leading to a flow pattern transition.

The information provided by this condition may be used to interpret the
evolution of groundwater head surfaces for transient flow, to delineate capture
zones for steady flow, and to examine flow regime changes for both transient
and steady flow. A couple of examples in two-dimensional groundwater flow
will be used to illustrate the usefulness.

2 The Condition

The flow in the vicinity of a stagnation point S at time ¢ [s] may be represented
by the discharge vector Q [m?/s] as

Qx) = (x—x5) - (VQ)s + %(x —X5)(x —x5) : (VVQ)s + O3), (1)

where X is the location of S, O(3) represents terms of order higher than two,
and the subscript s denotes that the term is evaluated at S. The zeroth-order
term Qg is not listed in the expansion for it is zero according to the definition
of a stagnation point, Qg = 0.

The first-order term is sufficient to approximate the flow about a stagnation
point when det(VQ)s # 0 (e.g., [11], [8]),

Qx) = (x = x5) - (VQ)s, (2)

where (VQ)s is the discharge gradient tensor evaluated at point S, and det(VQ)s
denotes the determinant of the tensor. The standard minimums, maximums,
and saddle points in Figure 1 are examples of such stagnation points in two-
dimensional groundwater flow obeying Darcy’s law.
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a. Saddle-maximum b. Saddle-minimum c. Saddle-saddle

Fig. 2. Examples of higher-order stagnation points.

When det(VQ)s = 0, higher-order terms in the Taylor series expansion have
to be incorporated in the approximation. This can be demonstrated as follows.
The expression (2) can be rewritten in terms of the eigenvalues A¢; and A5 of

(VQ)s,

Q(x) = Aesee + Aysey (3)
with e and e, as the unit vectors representing the principal directions of
(VQ)s. A relationship exists between the eigenvalues and det(VQ)s

Aeshys = det (VQ)s. (4)

The condition det(VQ)s = 0 implies that at least one of the two eigenvalues
is zero. When one eigenvalue is zero, for example, A¢; = 0, the Taylor series
approximation in (1) takes the form

QG) = ey + {510 = x)(x = %) (VIQ)] eefee. (3

2
When two eigenvalues are zero, A\¢s = A5 = 0, the approximation may take

the form .
Q) = 5 (x — x)(x — %) (VQ).. (6)

Figure 2 depicts three examples of higher-order stagnation points.

The above analysis demonstrates that the condition det (VQ)s = 0 makes a
stagnation point special, through which flow pattern transition may occur.
Such a stagnation point is referred to as a zero det (VQ)s stagnation point
here. Therefore, we may use this condition to quantify and understand flow
pattern transition. For a two-dimensional groundwater flow, this condition is
equivalent to Qs = 0 and det (VQ)s = 0;

(Qx)s = O, (7&)
(Qy)s =0, (7b)

B
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Several examples of well flow will be used next to illustrate the usefulness and
significance of this condition. In these examples the discharge vector is

T — Lo
9 w1
Q. = Qo cos Z 27 (& — 20 + () — gur)? (8a)

. a QZ Y — Ywi
Qy = Qosind ; 27 (7 — 2 2t (= i) (8b)
for a system of N steady wells, where )y and 6 are the magnitude and direction
of the regional flow, and @); and (., yu:) are the pumping rate and location
of the ith well [15,9]. For a system of transient wells pumping for a duration
of tg,

T — Twi

cosf — Fi(x,y,t), 9a,

Q QO Z 27'(' SL’ _ le) + (y _ ywi)2 ( Y ) ( )

Q QO sinf — Z Y~ Yui E(xa Y, t)? (9b)

27T :C - xwz) + (y - ywi)2
where
7(1—zw¢)2+(y—ym)2 7(I—xm)2+(y—ym)2
Fi(z,y,t)=¢ dapt H(t) —e dap (=t0) H(t —to), (10)

where «y, is the aquifer diffusivity and H(¢) the Heaviside function.

3 Examples

For the problem of two discharge wells depicted in Figure 3, the critical con-
dition Q/(2mrQod) = 1 where d is the half distance between the two wells, is
obtained the condition det (VQ)s = 0. While the result is identical to that
of the previous studies (e.g., [10]), the new approach is more general and can
be used for scenarios where explicit solutions are not available. For example,
results are presented in Figure 4 for four, six, eight, and ten wells.

Figure 5 illustrates how the transient flow evolves for the scenario of a single
well pumping for a duration of 7y, where 79 = /T with T' = Q*/(47%Qpa,).
The flow pattern transition occurs at 7. ~= 1.257y, denoted by the occurrence
of a det (VQ)s = 0 stagnation point.

Figure 6 depicts trajectories of instantaneous stagnation points for different
7o’s. It shows that smaller the value of 75 the longer the normalized time /7
it takes for the saddle point and the minimum to coincide to disappear from
the domain after pumping stops. For example, 7./79 ~ 1.25 when 75 = 0.2,
while 7. /79 &~ 1.02 when 75 = 5.0.
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a Q/(21Qod) <1 b.Q/2rQud) =1 ¢ Q/(27Qod) > 1

Fig. 3. Steady flow of two discharge wells in regional flow: ® = discharge wells; ®
= saddle points; @ = zero det (VQ)s stagnation points; solid lines = streamlines;
background shadings = head contours.
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Fig. 4. Steady flow of multiple discharge wells in regional flow: ® = discharge wells;
® = saddle points; ® = zero det (VQ)s stagnation points; solid lines = streamlines;
background shadings = head contours.

The evolution of two transient discharge wells is depicted in Figure 7, whose
steady counterpart is in Figure 3¢, Q/(27Qod) > 1. Four zero det (VQ)s
stagnation points occur during the whole process, depicted in Figure 7c, f, i,
and k.

4 Conclusions

This paper identifies a condition for the transition of flow patterns in two-
dimensional groundwater flow obeying Darcy’s law by examining stagnation
points using the Taylor series expansion. The Taylor series expansion of the
discharge vector is used to represent flow in the vicinity of a stagnation point.
It is found that the condition of det (VQ)s = 0 at a stagnation point represents
a condition through which flow patterns may change.

Examples of both steady and transient flow have been used to demonstrate
the significance and usefulness of this condition in understanding and clas-
sifying two-dimensional groundwater flow. Critical parameters were obtained
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a. 0.0 b. 0.17’0 C. 70
d. 1.17 e. 7.~ 1.25m f. 1.579

Fig. 5. Transient flow of a single well in regional flow at various times 7: 79 = 0.2;
® = discharge well; @ = minimum; ® = saddle point; solid lines = streamlines;
background shadings = head contours. A det (VQ)s = 0 stagnation point is formed
in Figure e. Each subfigure contains a plan view and a section view at the well in
the regional flow direction.

for pump-and-treat remediation by a system of wells aligned perpendicular to
the regional flow by identifying zero det (VQ)s stagnation points. Evolution
of transient well flow was quantified in terms of critical instants when zero
det (VQ)s stagnation points occur.

The condition of zero det (VQ)s stagnation points is general for flow pattern

transition and can be used to investigate transitions for flows with other aquifer
features.
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Fig. 6. Trajectories of stagnation points for a variety of 79 values: ® = saddle points;
e = minimums; ® = zero det (VQ)s stagnation points formed by coincidence of a
saddle and a minimum.
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