Multilayer Analytic Element Modeling of Radial Collector Wells

Mark Bakker(1), Vic Kelson, Ken Luther

(1) Yep, same guy

Outline

- How Multilayer Systems Ought To Work
- How Radial Collector Wells In A Multilayer Aquifier Ought To Work
, Hooray, a Use For that 3D Model!
0 Proof that Bigger Isn't Always Better

What?

- Separate aquifer into individually homogeneous horizontal layers
- One layer contains RCW
, Arms of RCW modeled with multiaquifer line sinks
- RCW complexities incorporated

Why?

- Horizontal flow modeled analytically
- Vertical stratification / anisotropy
, BCs such as friction, head losses
- Can be combined with regional 2D model

Analyijc Multilayer Approach

- Divicle aquifer vertically into N individually homogeneous layers (D-F approx in each)
- Transmission between layers governed by:
- vertical discharge from center to center
- vertical hydraulic conductivity
- vertical resistance
- Net result: system of N differential equations....

Multilayer System Equations

$$
q_{z, i}=\frac{h_{i}-h_{i-1}}{c_{i}}
$$

$$
c_{i}=\frac{H_{i-1}}{2 k_{v, i-1}}+\frac{H_{i}}{2 k_{v, i}}
$$

$$
\nabla^{2} h_{i}=\frac{q_{z, i}-q_{z, i+1}}{T_{i}}
$$

$$
\nabla^{2} h_{i}=\frac{h_{i}-h_{i-1}}{c_{i} T_{i}}-\frac{h_{i+1}-h_{i}}{c_{i+1} T_{i}}
$$

The Radial Collector Well

- The RCW is in one of the N layers
- Thickness of this layer = diameter of RCW arms
, Each arm modeled by M multiaquifer line sinks (constant strength)
- Each sink of length L
- Discharge of arm j:

$$
Q_{j}=\sum_{m=1}^{M} \sigma_{m, j} L_{m, j}
$$

A Call To Arms

Head Loss

- Outantified by comparison of condifions at the centers of adjacent line sinks
- Sm $_{m}$: head at center of line sink m

For acljacent line sinks $(m<M)$:

$$
\begin{aligned}
& \sigma_{\mathrm{m}}=\left(\mathrm{h}_{\mathrm{m}}-\phi_{\mathrm{m}}\right) / \mathrm{d} \\
& \sigma_{\mathrm{m}+1}=\left(\mathrm{h}_{\mathrm{m}+1}-\phi_{\mathrm{m}+1}\right) / \mathrm{d}
\end{aligned}
$$

Combine:

$$
d\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{m}+1}\right)=\left(\mathrm{h}_{\mathrm{m}}-\mathrm{h}_{\mathrm{m}+1}\right)-\Delta \phi_{\mathrm{m}}
$$

Or

$$
\left(\mathrm{h}_{\mathrm{m}}-\mathrm{h}_{\mathrm{m}+1}\right)-\mathrm{d}\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{m}+1}\right)=\Delta \phi_{\mathrm{m}}
$$

For link sink M

$$
\begin{gathered}
\sigma_{M}=\left(\mathrm{h}_{\mathrm{M}}-\phi_{\mathrm{M}}\right) / \mathrm{d} ; \Delta \phi_{\mathrm{M}}=\phi_{\mathrm{M}}-\phi_{\mathrm{C}} \\
=> \\
d \sigma_{M}=\mathrm{h}_{\mathrm{M}}-\left(\Delta \phi_{\mathrm{M}}+\phi_{\mathrm{c}}\right)
\end{gathered}
$$

$$
\mathrm{h}_{\mathrm{M}}-\mathrm{d}\left(\sigma_{\mathrm{M}}\right)-\phi_{\mathrm{c}}=\Delta \phi_{\mathrm{M}}
$$

Finding $\Delta \phi_{m}($ for $m<M)$

, Dajrcy ${ }^{(2)}$-Weisbach for $m<M$

$$
\begin{gathered}
\Delta \phi_{m}=f \frac{l_{m}}{D} \frac{V_{m}^{2}}{2 g} \longrightarrow \begin{array}{l}
\mathrm{Q}_{\mathrm{m}}=\pi \mathrm{R}^{2} \mathrm{~V}_{\mathrm{m}} \\
\mathrm{~V}_{\mathrm{m}}{ }^{2}=\mathrm{Q}_{\mathrm{m}}{ }^{2} / \pi^{2} \mathrm{R}^{4} \\
\Delta \phi_{m}=f \frac{l_{m}}{2 \pi^{2} R^{5}} \frac{Q_{m}{ }^{2}}{2 g}
\end{array} .
\end{gathered}
$$

(2) oh, nevermind

Finding $\Delta \phi_{m}$ (for $\left.m=M\right)$

, For $m=M:$
(segment M)

$$
\Delta \phi_{M}=f \frac{l_{M}}{D} \frac{V_{M}^{2}}{2 g}
$$

$$
\mathrm{V}_{\mathrm{m}}^{2}=\mathrm{Q}_{\mathrm{m}}^{2} / \pi^{2} \mathrm{R}^{4} ; \mathrm{K}_{\mathrm{L}}=1.0
$$

$$
\downarrow
$$

$$
\Delta \phi_{M}=\left(f \frac{l_{M}}{2 R}+1\right) \frac{Q_{M}{ }^{2}}{2 g \pi^{2} R^{4}}
$$

Good Grief, Now We Need Q_{m}

, For $m<M$...

- S_{m} : total discharge at center of sink m

$$
\begin{aligned}
& S_{m}=\sigma_{1} L_{1}+\ldots+\sigma_{m-1} L_{m-1}+\left(\sigma_{m} L_{m}\right) / 2 \\
& S_{m+1}=\sigma_{1} L_{1}+\ldots+\sigma_{m} L_{m}+\left(\sigma_{m+1} L_{m+1}\right) / 2
\end{aligned}
$$

,Q_{m} : average discharge, $\left(S_{m}+S_{m+1}\right) / 2$

$$
\begin{aligned}
& Q_{m}=\sigma_{1} L_{1}+\ldots+\sigma_{m-1} L_{m-1}+ \\
& \quad\left(3 \sigma_{m} L_{m}+\sigma_{m+1} L_{m+1}\right) / 4
\end{aligned}
$$

$Q_{\text {mil }}$ for $m=M$

- Compare center of sink M to end of arm at caisson:

$$
\begin{aligned}
& S_{M}=\sigma_{1} L_{1}+\ldots+\sigma_{M-1} L_{M-1}+\left(\sigma_{M} L_{M}\right) / 2 \\
& S_{C}=\sigma_{1} L_{1}+\ldots+\sigma_{M} L_{M}
\end{aligned}
$$

$Q_{M}:$ average discharge, $\left(S_{M}+S_{C}\right) / 2$

$$
\begin{gathered}
\mathrm{Q}_{M}=\sigma_{1} \mathrm{~L}_{1}+\ldots+\sigma_{m-1} \mathrm{~L}_{m-1}+ \\
3 \sigma_{M} \mathrm{~L}_{\mathrm{M}} / 4
\end{gathered}
$$

Recap: For $m<M$,

$$
\left(\mathrm{h}_{\mathrm{m}}-\mathrm{h}_{\mathrm{m}+1}\right)-\mathrm{d}\left(\sigma_{\mathrm{m}}-\sigma_{\mathrm{m}+1}\right)=\Delta \phi_{\mathrm{m}} \quad(* *)
$$

where

$$
\Delta \phi_{m}=f \frac{l_{m}}{2 \pi^{2} R^{5}} \frac{Q_{m}^{2}}{2 g}
$$

and

$$
\begin{aligned}
& Q_{m}=\sigma_{1} L_{1}+\ldots+\sigma_{m-1} L_{m-1}+ \\
& \quad\left(3 \sigma_{m} L_{m}+\sigma_{m+1} L_{m+1}\right) / 4
\end{aligned}
$$

Recap: For $m=M$,

$$
\mathrm{h}_{\mathrm{M}}-\mathrm{d}\left(\sigma_{\mathrm{M}}\right)-\phi_{\mathrm{c}}=\Delta \phi_{\mathrm{M}} \quad\left({ }^{* *}\right)
$$

where

$$
\Delta \phi_{M}=\left(f \frac{l_{M}}{2 R}+1\right) \frac{Q_{M}{ }^{2}}{2 g \pi^{2} R^{4}}
$$

and

$$
\begin{array}{r}
Q_{M}=\sigma_{1} L_{1}+\ldots+\sigma_{m-1} L_{m-1}+ \\
3 \sigma_{M} L_{M} / 4
\end{array}
$$

Pop Quiz!

, Is the number of equations equal to the number of unknowns?

- No! The number of equations is balanced by the unknown line sink strengths σ, but the head in the caisson, ϕ_{c}, is also unknown
Need one extra equation. Let the total discharge of a well with P arms be Q_{w},

$$
Q_{n}=\sum_{i=1}^{D} Q_{j}=\sum_{i=1}^{D} \sum_{m=1}^{m} \sigma_{m_{j}} L_{m_{j}}
$$

Pop Quizz, continued

- Are our equations (**) linear in terms of the unknown strengths σ ?
- No! The left hand sides are, but the right hand side contains $\mathrm{Q}_{\mathrm{m}}{ }^{2}$, and Q_{m} is linear in terms of the σ^{\prime} 's
- Solve iteratively, given an initial guess as to inflow along the arms.

Comparison to 3D: Horiz. Well

, center at (0,0); length $=60 \mathrm{~m}$

- Elevation $=3 \mathrm{~m}$, radius $=0.15 \mathrm{~m}$
- total discharge $=12,000 \mathrm{~m}^{3} / \mathrm{d}$
, 10 line sinks, $6 m$ each
, $\phi_{0}=24 \mathrm{~m}$ at $(60,0)$
, $k=150 \mathrm{~m} / \mathrm{d}$; unconfined
- "aquifer" = 12 layers; well in layer 8
- constant transmissivity in layer 1
- no head loss, etc.

Layer 1
Head (phreatic sfc)
Dashed - ML
Solid - 3D

Layer 8
Head at well
Dashed - ML
Solid - 3D

Streamlines

Dashed - ML Solid - 3D

Cross section: heads Dashed - ML Solid - 3D

Comparison to 3D: RCW

- center at $(0,0) ; 5$ arms, length of each $=60 \mathrm{~m}$
, elevation $=3 \mathrm{~m}$, radius of each arm $=0.15 \mathrm{~m}$
- raclius of caisson $=3 \mathrm{~m}$
- total discharge $=60,000 \mathrm{~m}^{3} / \mathrm{d}$
, 10 line sinks per arm, $6 m$ each
$\circ \varphi_{0}=24 \mathrm{~m}$ at $(100,0)$
- $k=150 \mathrm{~m} / \mathrm{d}$; unconfined
- "aquifer" = 12 layers; well in layer 8
- constant transmissivity in layer 1

Layer 1

Head (phreatic sfc)
Dashed - ML
Solid - 3D

Layer 8

Head at well
Dashed - ML
Solid - 3D

Application

- (Sligntily) new well geometry, aquifier properties
- Add laterals; investigate increase in well yield as a function of length of laterals and friction coefficient in Darcy-Weisbach equation

YYell / Aquiffer

, center at (0,0); 3 arms, length of each $=60 \mathrm{~m}$
, elevation $=3 \mathrm{~m}$, radius of each arm $=0.15 \mathrm{~m}$

- raclius of caisson $=3 \mathrm{~m} ; \mathrm{f}=0.02$
- spoccifited head in calisson $\phi_{c}=20 \mathrm{~m}$
, $\phi_{0}=24 \mathrm{~m}$ at $(200,0)$
J $k_{n}=200 \mathrm{~m} / \mathrm{d}$ in bottom $10 \mathrm{~m} ; 100 \mathrm{~m} / \mathrm{d}$ above
- $k_{v}=60 \mathrm{~m} / \mathrm{d}$
- "aquifer" = 18 layers; well in layer 14
- \Rightarrow RESULT: $\mathrm{Q}=22,400 \mathrm{~m}^{3} / \mathrm{d}$

Modifications to well

- Add 3 arms in layer 9; skewed position
- Maintain $\phi_{\mathrm{C}}=20 \mathrm{~m}$, change lengths

Summary

- Multilayer modeling of radial collector wells rules!
- Vertical stratification / anisotropy
, Boundary conditions along arm included
- (friction factor has significant effect on well yield)
- Can be combined with regional 2D model

