The Method of Images for Poisson Problems

William Olsen¹

¹Dakota County Water Resources Office

5th International Conference on the Analytic Element Method, 2006

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overview

Describe a method for finding and using image functions, that is applicable to problems governed by Poisson's equation

$$\nabla^2 \Phi = \gamma$$

Difficulties

- The image of Φ cannot be added in general, because that would change the specified divergence
- \blacktriangleright Conformal mapping of Φ is not generally used because it can deform the distribution of γ
- Milne-Thomson (1973), gives a special solution for a circular boundary with rotational flow that is analagous to what will be presented here.
- Follow the method of images for a 2-sided boundary described in Strack (1989)

Setting and Boundary Conditions

- Setting:
 - An infinite shallow confined aquifer with piecewise constant properties.
 - There exists a complex discharge potential, $\Omega = \Phi + i\Psi$.
 - There is a closed boundary \mathcal{B} , perhaps extending to ∞ .
- Boundary conditions along a two sided boundary B

• Boundary conditions expressed in terms of $\Phi = kH\phi$

Continuity of head:

Continuity of flow:

$$\Phi^{-} = \frac{k^{-}}{k^{+}} \Phi^{+}$$
$$\partial_{n} \Phi^{-} = \partial_{n} \Phi^{+}$$

Consider a relatively simple problem ...

There is non-constant infiltration created by a real valued function G

$$G = -\sigma(z-d)^2(\overline{z-d})^2$$

- ► There is a circular boundary, with center $z_c \neq d$, and radius R. The exterior and interior domains, \mathcal{D}^e and \mathcal{D}^i , have distinct hydraulic conductivities: k^e and k^i , which require a jump in the real potential Φ
- We seek an analytic element $\stackrel{E}{\Omega}$ that will satisfy both boundary conditions when added to *G*.

Approach

- ▶ Find an analytic function G̃ whose real and imaginary parts are exactly equal to G on the boundary.
- Map the boundary to the unit circle in the Z-plane.

$$z = RZ + z_c,$$
 $D = Z(d)$
 $G = -\sigma R^4 (Z - D)^2 (\overline{Z - D})^2$

The boundary can be defined by a function β(z) = z̄. In this case Z̄ = 1/Z. Substitute β(z) for Z̄ in G

$$\widetilde{G} = -\sigma R^4 \left(Z - D \right)^2 \left(\frac{1}{Z} - \overline{D} \right)^2$$

Interesting Properties of \widetilde{G}

• $\widetilde{G}(Z)$ is analytic because it is a function of Z only

- \widetilde{G} does not violate the governing differential equation
- \widetilde{G} is unique because its real and imaginary parts are fully defined on \mathcal{B}
- \widetilde{G} generates no flow across B
 - ▶ Why? Because the imaginary part of G̃ is a constant 0 on B, so the boundary is a streamline.

- \tilde{G} consists of singularities imaged across \mathcal{B} .
 - Hence: "The Method of Images"

Useing \widetilde{G} to create an Analytic Element for the Boundary

• Define a jump function, $\overset{1}{F}$ for the boundary, using \widetilde{G}

$$\begin{array}{ll}
\overset{1}{F}^{e} = \widetilde{G} & z \in \mathcal{D}^{e} \\
\overset{1}{F}^{i} = 0 & z \in \mathcal{D}^{e}
\end{array}$$

Boundary conditions

- The jump is exactly equal G, so α^F is capable of exactly meeting the continuity of head boundary condition
- Continuity of flow is met because the normal component of flow is 0 on both sides of B.

• <u>But</u>, \widetilde{G} must have singularities in \mathcal{D}^e that have to be removed.

Removing the singularities in \mathcal{D}^e with function \overline{F} In this example, the singularities can be removed algebraically

• Expand \widetilde{G} in a power series to isolate the singularities

$$\widetilde{G} = \sum_{n=-2}^{2} a_n Z^N$$

In general the singularities should be removed with a function of z to ensure continuity of flow. In this case the mapping is trivial, and we can safely subtract the offending terms as functions of Z.

$$-\vec{F} = -\frac{1}{2}a_0 - \sum_{n=1}^2 a_n Z^N$$

It is convenient, but not essential, to subtract one half of the constant term to retain symmetry.

The Analytic Element is the sum of $\stackrel{1}{F}$ and $\stackrel{2}{F}$

$$\Omega^{e} = \alpha \left(\overrightarrow{F} - \overrightarrow{F} \right)$$
$$= \alpha \left[\sigma R^{4} \left(D^{2} Z^{-2} - 2D(D\overline{D} + 1)Z^{-1} + \frac{1}{2}(1 + 4D\overline{D} + D^{2}\overline{D}^{2}) \right) \right]$$

$$\Omega^{i} = -\alpha \overline{F}$$

= $-\alpha \left[\sigma R^{4} \left(\overline{D}^{2} Z^{2} - 2 \overline{D} (D \overline{D} + 1) Z + \frac{1}{2} (1 + 4 D \overline{D} + D^{2} \overline{D}^{2}) \right) \right]$

Strength of the element

The strength of the element is found to vary between -2 and +2

$$\alpha = 2\frac{k^- - k^+}{k^- + k^+}$$

- At the extremes, it creates a constant head boundary, or an impermeable boundary
- At intermediate values, it creates a jump in Φ suitable for an inhomogeneity boundary.

More about \widetilde{G} and $\overset{2}{F}$

- Since G̃ is analytic, it is possible to derive it after performing a conformal mapping of G − We don't care how the divergence of G maps.
- $\stackrel{2}{F}$ must be defined as $\stackrel{2}{F}(z)$ in order to guarantee that it is continuous across \mathcal{B} and throughout both domains.

• There may be multiple ways to extract \tilde{F} from \tilde{G} .

More about \widetilde{G}

If G is defined in terms of x and y, which is typical for divergence specified functions, Then G(z, z̄) can be derived using these substitutions:

$$x = \frac{z + \overline{z}}{2}, \quad y = \frac{z - \overline{z}}{2}$$

- If G is not strictly real, the image set for \dot{F} can still be derived.
 - Derive \widetilde{G} from \overline{G}
 - On \mathcal{B} , $\widetilde{G} = \overline{G}$
 - ► (G̃ + G) has the required properties on B that G̃ alone has when G is strictly real

References

 Milne-Thomson, L. M. 1973. Theoretical Aerodynamics. New York, Dover Publications.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Strack, O.D.L., 1989. Groundwater Mechanics. Prentice Hall.