News

From aemwiki
Jump to: navigation, search

Eleventh International Conference on the Analytic Element Method

The 11th International Conference on the Analytic Element Method (AEM 2024) will be Saturday, June 1 and Sunday, June 2, 2024, on the campus of Princeton University, Princeton, New Jersey. This is the biennial opportunity for participants to present, listen, and discuss the recent advances and applications in the Analytic Element Method with the community of scientists and engineers most involved with the method. This is a pre-conference event the of MODFLOW and More conference.

Organizers: Otto Strack, Randal Barnes

Please kindly submit your abstracts via email to aemodconference@gmail.com. The deadline for abstract submissions is May 1st. Additionally, we request that you utilize this same email address for all conference-related communications.

Anaqsim new partnership with Yellow Sub Hydro

In the past year, Fitts Geosolutions (USA) has teamed with Yellow Sub Hydro (UK) to work on Anaqsim jointly. The releases include improvements in computational performance and in outputs and features. Visit the homepage click here.

The AnAqSim instructional series by McLane Environmental offers self-paced exercise sets for beginners and advanced modelers.


Bakker and Post book, Analytical Groundwater Modeling: theory and applications using Python

Bakker, Mark Bakker & Vincent Post, 2022, Analytical Groundwater Modeling: Theory and Applications using Python, CRC Press Taylor & Francis, doi: 10.1201/9781315206134

Strack receives 2021 M. King Hubbert Award

Professor Otto Strack of the University of Minnesota received the National Groundwater Association M. King Hubbert Award 2021

McLane presentation at MODFLOW and More 2019, Golden, Colorado

"AEM --- Stepwise Tool for Analyzing Flow in Fractured Bedrock Aquifers", by Charles McLane, MODFLOW and More, Golden, CO, June 3, 2019 (27 minutes). Click for Youtube video.


Recent Select Publications in the AEM wikibib

Kraemer, Stephen R. 2023. Analytic element domain boundary conditions for site-scale groundwater flow modeling Los Angeles Basin,Groundwater, https://ngwa.onlinelibrary.wiley.com/doi/10.1111/gwat.13322

Strack, Otto DL and Toller, Erik AL. 2022. An analytic element model for highly fractured elastic media, International Journal for Numerical and Analytical Methods in Geomechanics}, 46(2):297--314.

Leaf, Andrew T. and Fienen, Michael N. and Reeves, Howard W. 2021. SFRmaker and Linesink-Maker: Rapid Construction of Streamflow Routing Networks from Hydrography Data, Groundwater, 59(5):761-771, https://doi.org/10.1111/gwat.13095

Ramgraber, Maximilian and Schirmer, Mario, 2021. Hydrogeological uncertainty estimation with the analytic element method, Water Resources Research, 57(6).

Steward, David R, 2020. Analytic Element Method: Complex Interactions of Boundaries and Interfaces, Oxford University Press,

Mohammadi, A and Ghaeini-Hessaroeyeh, M and Fadaei-Kermani, E, 2020. Contamination transport model by coupling analytic element and point collocation methods, Applied Water Sciences, 10(1):1-10.

Koehn, Weston, 2020. Novel Hydrogeologic Characterization Methods: Utilizing the Analytic Element Method in Hydrogeophysical Studies, dissertation, Kansas State University.

Haserodt, M.J., Hunt, R.J., Cowdery, T.K., Leaf, A.T., and Baker, A.C., 2019. Simulation of the regional groundwater-flow system in the St. Louis River Basin, Minnesota: U.S. Geological Survey Scientific Investigations Report 2019–5033, 41 p., doi.org/10.3133/sir20195033.

Fitts, Charles R., 2018. Modeling dewatered domains in multilayer analytic element models, Groundwater, Methods Note, 56(4):557-561. July-August, doi:10.1111/gwat.12645.

Strack, Otto D.L., 2017. Analytical Groundwater Mechanics, Cambridge University Press, ISBN: 9781107148833

Strack, Otto D.L., 2017. Vertically integrated flow in stratified aquifers, Journal of Hydrology, 548:794-800, doi.org/10.1016/j.jhydrol.2017.01.039.

US EPA, 2016. Analysis of the Transport and Fate of Metals Released from the Gold King Mine in the Animas and San Juan Rivers, Chapter 8 Potential Groundwater Effects, Appendix D. Groundwater Data and Methods (GFLOW), U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-16/296