Difference between revisions of "Toolbox"

From aemwiki
Jump to: navigation, search
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
'''MathJax''' ('''TeX validator and converter''') is a program which renders mathematical formulae in LaTeX-syntax and outputs graphics that are embedded in wiki articles.  
 
'''MathJax''' ('''TeX validator and converter''') is a program which renders mathematical formulae in LaTeX-syntax and outputs graphics that are embedded in wiki articles.  
  
 +
UNDER REPAIR
  
 
Click on ''edit'' to view the LaTeX-syntax in between the ''math''-tag.  
 
Click on ''edit'' to view the LaTeX-syntax in between the ''math''-tag.  
Line 6: Line 7:
 
Here are some examples of LaTeX output produced in this manner:
 
Here are some examples of LaTeX output produced in this manner:
  
* <math>\int_a^xf(\zeta\,z)\,dx</math>
+
:<math>
* <math>\int_1^\infty \frac{1}{k^2}\,dk</math>
+
\int_a^xf(\zeta\,z)\,dx
* <math>\sqrt{x^2+2x+1}=|x+1| - ((\frac{2x^2}{x})^2)^2</math>
+
</math>
* <math>\ E = \sum_{i=1}^N e^{- J_{ij} \sigma_i \sigma_j} </math>
+
 
* <math>\ \Phi = \frac{Q}{2\pi}\log(z-z_w) </math>
+
:<math>
 +
\int_1^\infty \frac{1}{k^2}\,dk
 +
</math>
 +
 
 +
:<math>
 +
\sqrt{x^2+2x+1}=|x+1| - ((\frac{2x^2}{x})^2)^2
 +
</math>
 +
 
 +
:<math>
 +
\ E = \sum_{i=1}^N e^{- J_{ij} \sigma_i \sigma_j}  
 +
</math>
 +
 
 +
:<math>
 +
\ \Phi = \frac{Q}{2\pi}\log(z-z_w)  
 +
</math>
  
  

Revision as of 18:04, 12 May 2017

MathJax (TeX validator and converter) is a program which renders mathematical formulae in LaTeX-syntax and outputs graphics that are embedded in wiki articles.

UNDER REPAIR

Click on edit to view the LaTeX-syntax in between the math-tag.

Here are some examples of LaTeX output produced in this manner:

<math>

\int_a^xf(\zeta\,z)\,dx </math>

<math>

\int_1^\infty \frac{1}{k^2}\,dk </math>

<math>

\sqrt{x^2+2x+1}=|x+1| - ((\frac{2x^2}{x})^2)^2 </math>

<math>

\ E = \sum_{i=1}^N e^{- J_{ij} \sigma_i \sigma_j} </math>

<math>

\ \Phi = \frac{Q}{2\pi}\log(z-z_w) </math>


And here is a real case example, the Cauchy singular integral:

<math>\Omega(z) = \frac{1}{2\pi i}\int_{\Gamma}{\frac{\lambda(\delta)}{z-\delta}d\delta}</math>