Difference between revisions of "News"

From aemwiki
Jump to: navigation, search
(Recent Publications in the [http://www.analyticelements.org/wiki/index.php/Wikibib AEM Wiki Bib])
 
(126 intermediate revisions by 16 users not shown)
Line 1: Line 1:
== Misc ==
+
== Eleventh International Conference on the Analytic Element Method ==
  
add your news here
+
The 11th International Conference on the Analytic Element Method (AEM 2024) will be Saturday, June 1 and Sunday, June 2, 2024, on the campus of Princeton University, Princeton, New Jersey. This is the biennial opportunity for participants to present, listen, and discuss the recent advances and applications in the Analytic Element Method with the community of scientists and engineers most involved with the method.  This is a pre-conference event the of [https://igwmc.princeton.edu/modflow/courses-and-more/ MODFLOW and More conference].
  
 +
Organizers: Otto Strack, Randal Barnes
  
== AEM and Python Shortcourse, September 22-24, 2008, Bethesda, MD ==
+
Please kindly submit your abstracts via email to aemodconference@gmail.com. The deadline for abstract submissions is May 1st. Additionally, we request that you utilize this same email address for all conference-related communications.
  
Hello everybody -
+
== Anaqsim new partnership with Yellow Sub Hydro ==
We are very excited to be able to offer the course:
 
"Building and Applying Analytical Element Models with Examples and Exercises using Python"
 
2.5 Day Shortcourse, September 22-24, S.S. Papadopulos & Assoc.Office, Bethesda, Maryland (USA) 
 
As you know, analytic element models are often refreshingly easy to understand and very insightful. The best approach to learn the analytic element method is to implement it in a simple computer program. This may sound daunting, but using the easy and powerful Python language, it becomes possible for any hydrogeologist with just a basic understanding of the building blocks of a computer program. In this new course, which is taught by me, you will actually build your own analytic element model, and I expect you will have a great time doing it!
 
For further information on the course, please visit: http://www.sspa.com/Software/analytic.shtml
 
A block of rooms will be arranged at a nearby hotel for course participants – details will be provided on this web page soon.
 
For logistical questions, please contact Matt Tonkin, matt@sspa.com
 
For questions on the course content, please contact me at markbak@gmail.com
 
  
We hope to see you in September in Maryland.
+
In the past year, Fitts Geosolutions (USA) has teamed with Yellow Sub Hydro (UK) to work on Anaqsim jointly.  The releases include improvements in computational performance and in outputs and features.  Visit the homepage click [https://www.anaqsim.com here].
  
Best regards,
+
The [https://www.flexaem.com/tutorials-tools/tutorial-series AnAqSim instructional series] by McLane Environmental offers self-paced exercise sets for beginners and advanced modelers.
  
Mark Bakker
 
TU Delft, Kiwa WR, and WHPA, Inc.
 
  
== Visual AEM version 1.0 released March 2008 ==
+
== Bakker and Post book, Analytical Groundwater Modeling: theory and applications using Python ==
  
Dear Visual Bluebird Users,
+
Bakker, Mark Bakker & Vincent Post, 2022, Analytical Groundwater Modeling: Theory and Applications using Python, CRC Press Taylor & Francis, [https://doi.org/10.1201/9781315206134 doi: 10.1201/9781315206134]
 
You are receiving this mail because you have either downloaded the Visual Bluebird groundwater modeling software or have otherwise expressed interest in the release of the newest version of VBB.
 
 
Visual Bluebird has been officially superseded by Visual AEM, version 1.0, with extended support for multiple analytical element models, limited transient flow, and multiple layers. Visual AEM can now be accessed via the following web page:
 
 
http://www.civil.uwaterloo.ca/jrcraig/VisualAEM/Main.html
 
 
Included in this current release:
 
 
·        Support for multi-layer modeling with the TimML numerical engine
 
·        Limited support for transient flow (Theis pumping wells)
 
·        Multi-species numerical contaminant transport using analytic (AEM) flow fields
 
·        More advanced analytical transport solutions (including parent-daughter decay/biodegradation)
 
·        Improved support for basemaps (vector or raster) and digital elevation models (DEMs)
 
·        A geological media database for importing common soil types and properties
 
·        Element geometric simplification routines
 
·        Extended support of contour labeling and visualization, with contour masking
 
·        Extended mesh and grid editing capabilities
 
·        Improved object manager features
 
·        More robust model checking
 
·        An updated version of the numerical engine Bluebird/Cardinal (version 3.5)
 
·        Many minor revisions, including bug removal       
 
 
As always, we encourage requests and suggestions! If you have any problems, complaints, or praise for the newest version, feel free to contact the author at jrcraig@uwaterloo.ca
 
 
Please feel free to forward this e-mail to other interested parties.
 
 
If you would like to be removed from this distribution list, please reply to this message with the heading “UNSUBSCRIBE”
 
 
Kind Regards,
 
 
James R. Craig, Ph.D.
 
Assistant Professor
 
Department of Civil and Environmental Engineering
 
University of Waterloo
 
jrcraig@uwaterloo.ca
 
http://www.civil.uwaterloo.ca/jrcraig/
 
(519) 888-4567 x37554
 
  
 +
== Strack receives 2021 M. King Hubbert Award ==
  
== Recent Publications in the [http://www.analyticelements.org/wiki/index.php/Wikibib AEM Wiki Bib] ==
+
Professor Otto Strack of the University of Minnesota received the National Groundwater Association [https://www.ngwa.org/members/awards/m-king-hubbert-award-recipients M. King Hubbert Award 2021]
  
Strack, O. D. L. (2009), Using Wirtinger calculus and holomorphic matching to obtain the discharge potential for an
+
== McLane presentation at MODFLOW and More 2019, Golden, Colorado ==
elliptical pond, Water Resour. Res., 45, W01409, doi:10.1029/2008WR007128, http://www.agu.org/pubs/crossref/2009/2008WR007128.shtml.
 
  
Anderson, E.I., and M. Bakker (2008), Groundwater flow through anisotropic fault zones in multiaquifer systems, Water Resources Research,44(11),W11433,http://dx.doi.org/10.1029/2008WR006925.
+
"AEM --- Stepwise Tool for Analyzing Flow in Fractured Bedrock Aquifers", by Charles McLane, MODFLOW and More, Golden, CO, June 3, 2019 (27 minutes)
 +
Click for [https://youtu.be/cUVGf6ffSIM Youtube video].
  
  
Mark Bakker, Derivation and relative performance of strings of line elements for modeling (un)confined and semi-confined flow, Advances in Water ResourcesVolume 31, Issue 6, , June 2008, Pages 906-914.
+
== Recent Select Publications in the AEM [[wikibib]]  ==
(http://www.sciencedirect.com/science/article/B6VCF-4S0PKNG-2/1/f62af25c62ba97b380faa716b51a2e0a)
 
  
  
Steward, D. R., P. Le Grand, et al. (2008). "Analytic formulation of Cauchy integrals for boundaries with curvilinear geometry." Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences 464(2089): 223-248.
+
Kraemer, Stephen R. 2023. Analytic element domain boundary conditions for site-scale groundwater flow modeling Los Angeles Basin,Groundwater, [https://ngwa.onlinelibrary.wiley.com/doi/10.1111/gwat.13322 https://ngwa.onlinelibrary.wiley.com/doi/10.1111/gwat.13322]
 
Mesa, E. and E. I. Anderson (2008). "A local model for analysis of pump and treat systems with vertical barrier walls." Advances in Water Resources 31(3): 473-483.
 
  
Kraemer, S. R. (2007). "Analytic Element Ground Water Modeling as a Research Program (1980 to 2006)." Ground Water 45(4): 402-408.
+
Strack, Otto DL and Toller, Erik AL. 2022. An analytic element model for highly fractured elastic media, International Journal for Numerical and Analytical Methods in Geomechanics}, 46(2):297--314.
  
Jin, W. and D. R. Steward (2007). "The transition of flow patterns through critical stagnation points in two-dimensional groundwater flow." Advances in Water Resources 30(1): 16-28.
+
Leaf, Andrew T. and Fienen, Michael N. and Reeves, Howard W. 2021. SFRmaker and Linesink-Maker: Rapid Construction of Streamflow Routing Networks from Hydrography Data, Groundwater, 59(5):761-771, [https://doi.org/10.1111/gwat.13095 https://doi.org/10.1111/gwat.13095]
  
Becker, M. W. and Z. Jiang (2007). "Flux-based contaminant transport in a GIS environment." Journal of Hydrology 343(3-4): 203-210.
+
Ramgraber, Maximilian and Schirmer, Mario, 2021. Hydrogeological uncertainty estimation with the analytic element method, Water Resources Research, 57(6).
  
Bandilla, K. W., I. Jankovic, et al. (2007). "A new algorithm for analytic element modeling of large-scale groundwater flow." Advances in Water Resources 30(3): 446-454.
+
Steward, David R, 2020. Analytic Element Method: Complex Interactions of Boundaries and Interfaces, Oxford University Press,
  
Bakker, M., K. Maas, et al. (2007). "Analytic modeling of groundwater dynamics with an approximate impulse response function for areal recharge." Advances in Water Resources 30(3): 493-504.
+
Mohammadi, A and Ghaeini-Hessaroeyeh, M and Fadaei-Kermani, E, 2020. Contamination transport model by coupling analytic element and point collocation methods, Applied Water Sciences, 10(1):1-10.
 +
 
 +
Koehn, Weston, 2020. Novel Hydrogeologic Characterization Methods: Utilizing the Analytic Element Method in Hydrogeophysical Studies, dissertation, Kansas State University.
  
Bakker, M. (2007). "Simulating groundwater flow to surface water features with leaky beds using analytic elements." Advances in Water Resources 30(3): 399-407.
+
Haserodt, M.J., Hunt, R.J., Cowdery, T.K., Leaf, A.T., and Baker, A.C., 2019.  Simulation of the regional groundwater-flow system in the St. Louis River Basin, Minnesota: U.S. Geological Survey Scientific Investigations Report 2019–5033, 41 p., [https://doi.org/10.3133/sir20195033 doi.org/10.3133/sir20195033].
 +
 
 +
Fitts, Charles R., 2018. Modeling dewatered domains in multilayer analytic element models, Groundwater, Methods Note, 56(4):557-561. July-August, [https://doi:10.1111/gwat.12645 doi:10.1111/gwat.12645].
 +
 
 +
Strack, Otto D.L., 2017.  Analytical Groundwater Mechanics, Cambridge University Press, [http://www.cambridge.org/9781107148833 ISBN: 9781107148833]
 +
 
 +
Strack, Otto D.L., 2017.  Vertically integrated flow in stratified aquifers, Journal of Hydrology, 548:794-800, [https://doi.org/10.1016/j.jhydrol.2017.01.039 doi.org/10.1016/j.jhydrol.2017.01.039].
 +
 
 +
US EPA, 2016. Analysis of the Transport and Fate of Metals Released from the Gold King Mine in the Animas and San Juan Rivers, Chapter 8 Potential Groundwater Effects, Appendix D. Groundwater Data and Methods (GFLOW), U.S. Environmental Protection Agency, Washington, DC, [https://analyticelements.org/pubs/report/EPA_2017_GKM_Groundwater.pdf EPA/600/R-16/296]

Latest revision as of 20:32, 3 April 2024

Eleventh International Conference on the Analytic Element Method

The 11th International Conference on the Analytic Element Method (AEM 2024) will be Saturday, June 1 and Sunday, June 2, 2024, on the campus of Princeton University, Princeton, New Jersey. This is the biennial opportunity for participants to present, listen, and discuss the recent advances and applications in the Analytic Element Method with the community of scientists and engineers most involved with the method. This is a pre-conference event the of MODFLOW and More conference.

Organizers: Otto Strack, Randal Barnes

Please kindly submit your abstracts via email to aemodconference@gmail.com. The deadline for abstract submissions is May 1st. Additionally, we request that you utilize this same email address for all conference-related communications.

Anaqsim new partnership with Yellow Sub Hydro

In the past year, Fitts Geosolutions (USA) has teamed with Yellow Sub Hydro (UK) to work on Anaqsim jointly. The releases include improvements in computational performance and in outputs and features. Visit the homepage click here.

The AnAqSim instructional series by McLane Environmental offers self-paced exercise sets for beginners and advanced modelers.


Bakker and Post book, Analytical Groundwater Modeling: theory and applications using Python

Bakker, Mark Bakker & Vincent Post, 2022, Analytical Groundwater Modeling: Theory and Applications using Python, CRC Press Taylor & Francis, doi: 10.1201/9781315206134

Strack receives 2021 M. King Hubbert Award

Professor Otto Strack of the University of Minnesota received the National Groundwater Association M. King Hubbert Award 2021

McLane presentation at MODFLOW and More 2019, Golden, Colorado

"AEM --- Stepwise Tool for Analyzing Flow in Fractured Bedrock Aquifers", by Charles McLane, MODFLOW and More, Golden, CO, June 3, 2019 (27 minutes). Click for Youtube video.


Recent Select Publications in the AEM wikibib

Kraemer, Stephen R. 2023. Analytic element domain boundary conditions for site-scale groundwater flow modeling Los Angeles Basin,Groundwater, https://ngwa.onlinelibrary.wiley.com/doi/10.1111/gwat.13322

Strack, Otto DL and Toller, Erik AL. 2022. An analytic element model for highly fractured elastic media, International Journal for Numerical and Analytical Methods in Geomechanics}, 46(2):297--314.

Leaf, Andrew T. and Fienen, Michael N. and Reeves, Howard W. 2021. SFRmaker and Linesink-Maker: Rapid Construction of Streamflow Routing Networks from Hydrography Data, Groundwater, 59(5):761-771, https://doi.org/10.1111/gwat.13095

Ramgraber, Maximilian and Schirmer, Mario, 2021. Hydrogeological uncertainty estimation with the analytic element method, Water Resources Research, 57(6).

Steward, David R, 2020. Analytic Element Method: Complex Interactions of Boundaries and Interfaces, Oxford University Press,

Mohammadi, A and Ghaeini-Hessaroeyeh, M and Fadaei-Kermani, E, 2020. Contamination transport model by coupling analytic element and point collocation methods, Applied Water Sciences, 10(1):1-10.

Koehn, Weston, 2020. Novel Hydrogeologic Characterization Methods: Utilizing the Analytic Element Method in Hydrogeophysical Studies, dissertation, Kansas State University.

Haserodt, M.J., Hunt, R.J., Cowdery, T.K., Leaf, A.T., and Baker, A.C., 2019. Simulation of the regional groundwater-flow system in the St. Louis River Basin, Minnesota: U.S. Geological Survey Scientific Investigations Report 2019–5033, 41 p., doi.org/10.3133/sir20195033.

Fitts, Charles R., 2018. Modeling dewatered domains in multilayer analytic element models, Groundwater, Methods Note, 56(4):557-561. July-August, doi:10.1111/gwat.12645.

Strack, Otto D.L., 2017. Analytical Groundwater Mechanics, Cambridge University Press, ISBN: 9781107148833

Strack, Otto D.L., 2017. Vertically integrated flow in stratified aquifers, Journal of Hydrology, 548:794-800, doi.org/10.1016/j.jhydrol.2017.01.039.

US EPA, 2016. Analysis of the Transport and Fate of Metals Released from the Gold King Mine in the Animas and San Juan Rivers, Chapter 8 Potential Groundwater Effects, Appendix D. Groundwater Data and Methods (GFLOW), U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-16/296