Editing Library of analytic element solutions (under construction)

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 1: Line 1:
Categorization is loosely based upon scheme used by Bruggeman (1999)
+
= analytical solutions (Bruggeman,1999 classification) =
  
= Steady-state Confined/Unconfined Potential Flow =
+
== Phreatic (Unconfined) groundwater ==
  
 
Governing Equation (1D or 2D):  
 
Governing Equation (1D or 2D):  
  
<math>\nabla \cdot \left(k\phi \nabla h\right)=-N </math>
+
<math>\nabla \cdot \left(kh \nabla h\right)=S_y\frac{\partial h}{\partial t}-N </math>
  
Where <math>\phi</math> is the saturated thickness of the aquifer [<math>L</math>], <math>N</math> is the vertical influx to the aquifer (recharge/leakage) [<math>LT^{-1}</math>], and <math>h</math> [<math>L</math>] is the head measured with the respect to a flat aquifer base.
+
Where <math>S_y</math> is the specific yield [-], <math>N</math> is the vertical influx to the aquifer (recharge/leakage) [<math>LT^{-1}</math>], and <math>h</math> [<math>L</math>] is both the head and the saturated thickness (i.e., the head is measured with the respect to a flat aquifer base).
 
 
A common transformation (the Girinskii potential) can be used to simplified the governing equation, and make it equally valid for both confined flow (<math>\phi=H</math>) and unconfined flow (<math>\phi=h</math>):
 
 
 
<math>
 
\Phi=\frac{1}{2}k h^2
 
</math>
 
  
if <math>h<H</math>, and
+
A common transformation to linearize the steady state form of the equation is to solve the problem in terms of the Girinskii Potential:
  
<math>
+
<math>\Phi=\frac{1}{2}k h^2</math>
\Phi=kHh-\frac{1}{2}kH^2
 
</math>
 
  
if <math>h>H</math>. This results in the Laplace/Poisson equation:
+
Leaving us with a revised governing equation (the Poisson equation):
  
 
<math>\nabla ^2\Phi=-N </math>
 
<math>\nabla ^2\Phi=-N </math>
  
The integrated discharge vector may be obtained from the gradient of the potential.
+
=== Exact solutions ===
  
== One-dimensional horizontal flow ==
+
=== One-dimensional horizontal flow ===
  
 
Governing Equation:
 
Governing Equation:
  
<math>\frac{\partial^2 \Phi}{\partial x^2}=-N</math>
+
<math>\frac{\partial}{\partial x}\left(kh\frac{\partial h}{\partial x}\right)=S_s\frac{\partial h}{\partial t}-N</math>
  
 
'''Solution #1: Steady-state / Two Dirichlet Boundaries'''  
 
'''Solution #1: Steady-state / Two Dirichlet Boundaries'''  
Line 37: Line 29:
 
  Boundary conditions:  
 
  Boundary conditions:  
 
   
 
   
  <math>\Phi(0)=\Phi_1; \frac{}{} \Phi(L)=\Phi_2</math>
+
  <math>h(0)=h_1; \frac{}{} h(L)=h_2</math>
 
   
 
   
 
  Solution:
 
  Solution:
 
   
 
   
 
  <math>\Phi(x)=-\frac{1}{2}Nx^2+\left(\frac{\Phi_2-\Phi_1}{L}+\frac{1}{2}NL\right)x+\Phi_1</math>
 
  <math>\Phi(x)=-\frac{1}{2}Nx^2+\left(\frac{\Phi_2-\Phi_1}{L}+\frac{1}{2}NL\right)x+\Phi_1</math>
 +
 +
Where
 +
 +
<math>\Phi_1=\frac{1}{2}kh_1^2</math> and <math>\Phi_2=\frac{1}{2}kh_2^2</math>
  
 
'''Solution #2: Steady-state / One Dirichlet, One Neumann Boundary'''  
 
'''Solution #2: Steady-state / One Dirichlet, One Neumann Boundary'''  
Line 47: Line 43:
 
  Boundary conditions:
 
  Boundary conditions:
 
   
 
   
  <math>\Phi(0)=\Phi_1; \frac{}{} Q_x(L)=\beta</math>
+
  <math>h(0)=h_1; \frac{}{} Q_x(L)=\beta</math>
 
   
 
   
 
  Solution:
 
  Solution:
 
   
 
   
 
  <math>\Phi(x)=-\frac{1}{2}Nx^2+\left(-\beta+NL\right)x+\Phi_1</math>
 
  <math>\Phi(x)=-\frac{1}{2}Nx^2+\left(-\beta+NL\right)x+\Phi_1</math>
 +
 +
Where
 +
 +
<math>\Phi_1=\frac{1}{2}kh_1^2</math>
  
== Two-dimensional radially-symmetric horizontal flow ==
+
=== Two-dimensional radial-symmetric horizontal flow ===
  
 
Governing Equation:
 
Governing Equation:
  
<math>\frac{\partial}{\partial r}\left(r\frac{\partial \Phi}{\partial r}\right)=-N</math>
+
<math>\frac{\partial}{\partial r}\left(khr\frac{\partial h}{\partial r}\right)=S_s\frac{\partial h}{\partial t}-N</math>
  
 
'''Solution #1 (Steady State Thiem Solution):'''
 
'''Solution #1 (Steady State Thiem Solution):'''
Line 72: Line 72:
 
  <math>\Phi(r)=-\frac{Q}{2\pi}\ln\left(\frac{r}{R}\right)+\Phi_0</math>
 
  <math>\Phi(r)=-\frac{Q}{2\pi}\ln\left(\frac{r}{R}\right)+\Phi_0</math>
  
== Two-dimensional general horizontal flow ==
+
=== General two-dimensional horizontal flow ===
  
Governing Equation:
+
== Confined groundwater ==
 
 
<math>\frac{\partial^2 \Phi}{\partial x^2}+\frac{\partial^2 \Phi}{\partial y^2}=-N</math>
 
 
 
= Transient Phreatic (Unconfined) groundwater =
 
 
 
Governing Equation (1D or 2D):
 
 
 
<math>\nabla \cdot \left(kh \nabla h\right)=S_y\frac{\partial h}{\partial t}-N </math>
 
 
 
Where <math>S_y</math> is the specific yield [-], <math>N</math> is the vertical influx to the aquifer (recharge/leakage) [<math>LT^{-1}</math>], and <math>h</math> [<math>L</math>] is both the head and the saturated thickness (i.e., the head is measured with the respect to a flat aquifer base).
 
 
 
== Exact solutions ==
 
 
 
 
 
 
 
== General two-dimensional horizontal flow ==
 
 
 
= Transient Confined groundwater =
 
  
  
Line 107: Line 89:
 
Where <math>\alpha=\frac{k}{S_s}</math> is the hydraulic diffusivity [<math>LT^{-1}</math>]of the aquifer.  
 
Where <math>\alpha=\frac{k}{S_s}</math> is the hydraulic diffusivity [<math>LT^{-1}</math>]of the aquifer.  
  
== One-dimensional flow  ==
+
=== One-dimensional flow  ===
 
 
== Two-dimensional flow ==
 
 
 
== Two-dimensional radially-symmetric flow ==
 
  
'''Solution #1 (Transient Theis Solution):'''
+
=== Two-dimensional flow ===
  
Boundary/initial conditions:
+
=== Two-dimensional radially-symmetric flow ===
 
<math>\Phi(r,0)=\Phi_0\frac{}{}</math>
 
 
<math>\underset{r\rightarrow 0}{\lim}\int_0^{2\pi} rkH\frac{\partial h}{\partial r}d\theta=\underset{r\rightarrow 0}{\lim}\int_0^{2\pi} rQ_rd\theta=QH(t)</math>
 
(i.e., the total flow out at r=0 is equal to the total flow from the well, <math>Q</math>).
 
Here, <math>H(t)</math> is the heaviside function, equal to 1 for <math>t>0</math>, zero otherwise.
 
 
 
<math>\underset{r\rightarrow \infty}{\lim}\Phi(r)=\Phi_0\frac{}{}</math>
 
 
Solution:
 
 
<math>\Phi(r,t) = \Phi_0-\frac{Q}{4\pi}E_1\left(\frac{r^2 S_s}{4kt}\right)</math>
 
 
Where <math>E_1()</math> is the exponential integral (a.k.a. the "well function")
 
  
== Three-dimensional flow ==
+
=== Three-dimensional flow ===
  
== Three-dimensional spherically-symmetric flow ==
+
=== Three-dimensional spherically-symmetric flow ===
  
== Three-dimensional axially-symmetric flow ==
+
=== Three-dimensional axially-symmetric flow ===
  
= Multi-layer systems =
+
== Multi-layer systems ==
  
= Dispersion =
+
== Dispersion ==
  
=  Density flow (interface)=
+
==  Density flow (interface)==

Please note that all contributions to AEMWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see AEMWiki:Copyrights for details). Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)